cho tam giác abc trên cạnh ab, bc, ca lấy các đoạn thẳng ad, be, cf sao cho mỗi đoạn bằng 1/3 mỗi cạnh. chứng minh diện tích tam giác def = 1/3 diện tích tam giác abc
Cho tam giác ABC. Lấy các điểm D, E, F thứ tự thuộc các cạnh AB, BC, CA sao cho AD=1/3*AB, BE=1/3*BC, CF=1/3*CA. Các đoạn thẳng AE, BF, CD cắt nhau tạo thành một tam giác. Chứng minh rằng diện tích tam giác này bằng 1/7 diện tích tam giác ABC.
từ 3 đỉnh A,B,C của tam giác ABC vẽ ba đường thẳng song song với nhau, chúng lần lượt cắt cạnh BC và các đường thẳng CA, AB tại D,E,F chứng minh rằng:
a. 1/AD=1/BE+1/CF
b. S DEF =2S ABC
Lưu ý S là diện tích nha
Bài 3: Cho tam giác ABC vuông tại A có đường cao AH .Cho biết AB=15cm, AH=12cm
a) Chứng minh tam giác AHB ~ tam giác CHA
b) Tính độ dài đoạn thẳng HB;HC;AC .
c) Trên cạnh AC lấy điểm E sao cho CE=5cm ;trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CE F vuông.
d) Chứng minh :CE.CA=CF
Cho tam giác ABC. Lấy các điểm D,E,F theo thứ tự thuộc các cạnh AB, BC, CA sao cho AD = 1/3 AB, BE = 1/3 BC, CF + 1/3 CA. Các đoạn thẳng AE,BF,CD cắt nhau tạo thành một tam giác. Chứng minh rằng diện tích tam giác này bằng 1/7 diện tích tam giác ABC
Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H ( D,E,F lần lượt thuộc các cạnh BC, CA, AB). CMR:
a, AF.AB = AH.AD = AE.AC
b, H là giao điểm 3 đường phân giác trong tam giác DEF.
c, Gọi M,N,P,I,K,Q lần lượt là trung điểm của các cạnh BC, AC, AB, EF, ED, DF. CMR:
các đường thẳng MI, NQ, PK đồng quy
d, Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a,b,c. Độ dài các đoạn thẳng AD, BE, CF là a', b', c'. Tìm GTNN của biểu thức \(\frac{\left(a+b+c\right)^2}{a'^2+b'^2+c'^2}\)
1, Cho tam giác abc. D là trung điểm của AB. E và F là các điểm nằm trên BC. Biết: BE=EF=CF.
CMR: a, DE//AF b, AF=2DE
2, Chia 1 cạnh của 1 tam giác thành 3 phần = nhau từ các điểm chia kẻ các đoạn song song với cạnh thứ hai (đầu mút thứ 2 của các đoạn thẳng này nằm trên đường thẳng thứ 3). Tính độ dài của các đoạn thẳng này biết độ dài cạnh thứ 2 = 6cm
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
Cho tam giác ABC có AB = c; BC = a; CA = b và diện tích tam giác ABC = S. Lấy D,E,F lần lượt thuộc các cạnh AB;BC;CA thỏa \(\frac{AD}{AB}=\frac{BE}{BC}=\frac{CF}{CA}=\frac{1}{3}\)gọi M,N,P lần lượt là giao điểm của: AE,CD ; AE,BF ; BF,CD. Tính diện tích tam giác MNP theo a,b,c và S