Tìm tất cả các giá trị nguyên dương của tham số m sao cho bất phương trình sau có nghiệm: x + 5 + 4 - x ≥ m
A. 1
B. 2
C. 3
D. 4
Có tất cả bao nhiêu giá trị nguyên của a để bất phương trình 2 log 1 2 a - 3 + 2 x . log 1 2 a - x 2 < 0 nghiệm đúng với mọi x.
A. 5
B. 6
C. 7
D. 8
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn [-10;10] để bất phương trình log 3 2 x 2 + x + m + 1 x 2 + x + 1 ≥ 2 x 2 + 4 x + 5 - 2 m có nghiệm. Số phần tử của tập hợp S bằng
A. 20
B. 10
C. 15
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ R có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên thuộc đoạn - 10 ; 10 của tham số m để bất phương trình f 1 - x 2 + 2 3 x 3 - x 2 + 8 3 - f m ≤ 0 có nghiệm. Số phần tử của tập hợp S bằng
A. 9
B. 10
C. 12
D. 11
Tổng các nghiệm nguyên của bất phương trình: \(2\log_2\sqrt{x+1}\le2-\log_2\left(x-2\right)\) bằng
Tìm tất cả các giá trị thực của tham số m sao cho bất phương trình 3 ( 1 + x + 3 - x ) - 2 ( 1 + x ) ( 3 - x ) ≥ m nghiệm đúng với mọi x ≤ - 1 ; 3 ?
A. m ≤ 6 .
B. m ≥ 6 .
C. m ≥ 6 2 - 4 .
D. m ≤ 6 2 - 4 .
Tổng tất cả các nghiệm của phương trình log 3 7 - 3 x = 2 - x bằng
A. 2
B. 1
C. 7
D. 3
Tổng tất cả các nghiệm của phương trình log 3 7 - 3 x = 2 - x bằng
A.2
B.1
C.7
D.3
Cho bất phương trình 9 x + ( m - 1 ) . 3 x + 3 > 0 ( 1 ) . Tìm tất cả các giá trị của tham số m để bất phương trình (1) nghiệm đúng ∀ x > 1
A. m ≥ - 3 2
B. m > - 3 2
C. m > 3 + 2 2
D. m ≥ 3 + 2 2