Có chia hết cho 3
Cứ ghép 2 số lại với nhau, sau đó nhân phân phói ra là xong :
VD : \(2+2^2=2.1+2.2=2.\left(1+2\right)=2.3\)
A = 2 + 22 + 23 + 24 + ... + 210
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 29 + 210 )
A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 29 . ( 1 + 2 )
A = 2 . 3 + 23 . 3 + ... + 29 . 3
= ( 2 + 23 + ... + 29 ) . 3 \(⋮\)3
Ta có:A= 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^10=
= (2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)+(2^9+2^10)=
= 6+2^2.(2+2^3)+2^4.(2+2^2)+2^6.(2+2^2)+2^8.(2+2^2)=
=6+ 2^2.6+2^4.6+2^6.6+2^8.6=6.(1+2^2+2^4+2^8)
Vì 6\(⋮\)3 nên 6.(1+2^2+2^4+2^8)\(⋮\)3 hay A\(⋮\)3
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
A = ( 2 + 22 ) + ( 23 + 24 ) + ( 25 + 26 ) + ( 27 + 28 ) + ( 29 + 210 )
A = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + 25 x ( 1 + 2 ) + 27 x ( 1 + 2 ) + 29 x ( 1 + 2 )
A = 2 x 3 + 23 x 3 + 25 x 3 + 27 x 3 + 29 x 3
Có: 2 x 3 \(⋮\)3
23 x 3 \(⋮\)3
25 x 3 \(⋮\)3
27 x 3 \(⋮\)3
29 x 3 \(⋮\)3
\(\Rightarrow\)A \(⋮\)3