NH

Tổng bình phương của 1974 số tự nhiên liên tiếp có phải là số chính phương hay không

JA
30 tháng 7 2016 lúc 15:18

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)

<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)

\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)

=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

Bình luận (0)
H24
30 tháng 7 2016 lúc 15:31

hay ket ban voi luffy

Bình luận (0)
NH
8 tháng 8 2016 lúc 14:31

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       n2+(n+1)2+(n+2)2+...+(n+1973)2

<=>[n2+(n+1)2+(n+3)2]+....+[(n+1971)2+(n+1972)2+(n+1973)2]

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

(3k1+2)+(3k2+2)+...+(3k658+2)

3.(k1+k2+k3+...+k658)+2.658

=3.(k1+k2+k3+...+k658)+1316chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

 
Bình luận (0)
LT
29 tháng 3 2017 lúc 13:08

Tk cho mình đi rồi mình tk lại

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
SN
Xem chi tiết
NA
Xem chi tiết
PT
Xem chi tiết
TH
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
LT
Xem chi tiết