. 2015 chia hết cho 5, vậy ta đặt vấn đề \(n^2+n+1\) có chia hết cho 5 không?
. Ta có: \(n^2+n=n\left(n+1\right)\) là tích của 2 số tự nhiên liên tiếp nên tận cùng chỉ có thể bằng 0,2,6
. => Tận cùng của \(n\left(n+1\right)+1\) là 1,3,7
. => \(n\left(n+1\right)+1\) không chia hết cho 5
. => \(n^2+n+1\) không chia hết cho 2015
. Vậy không tồn tại số tự nhiên n để \(n^2+n+1\) chia hết cho 2015