BT

Toán nâng cao !!

NT
23 tháng 9 2023 lúc 8:33

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{2019.2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{2019}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2020}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}+\dfrac{1}{2020}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2020}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2019}+\dfrac{1}{2020}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1010}\right)\)

\(=\dfrac{1}{1011}+\dfrac{1}{1012}+\dfrac{1}{1013}+...+\dfrac{1}{2020}\)

\(\Rightarrow dpcm\)

Bình luận (0)

Các câu hỏi tương tự
17
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
DX
Xem chi tiết
NH
Xem chi tiết