Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
CMR:
a, \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>\frac{n}{n+1}\)
b, \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n-1}\)
c, \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
CMR : với mọi số nguyên dương n thì :
a, \(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
b, \(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\)
c, \(\frac{1}{1^4+1^2+1}+\frac{1}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+...+\frac{n}{n^4+n^2+1}< \frac{1}{2}\)
Bt: Tính
a) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
b) C/m: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
c) C/m: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}
Bt: Tính
a) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
b) C/m: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
c) C/m: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}<2\)
d) C/m: \(\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}<2\sqrt{n}\)
\(a_n=\frac{1-\frac{1}{6}.\left(-\frac{n}{n+2}\right)^{n-3}}{1+\frac{1}{6}.\left(-\frac{n}{n+2}\right)^{n-3}}\)
\(\sin^3\frac{x}{3}+3\sin^3\frac{x}{3^2}+...+3^{n-1}\sin^3\frac{x}{3}=\frac{1}{4}\left(3^n\sin^3\frac{x}{3^n}-\sin x\right)\)\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2n+1}{2n+2}<\frac{1}{\sqrt{3n+4}}\left(n\ge1\right)\)\(\left(n!\right)^2\ge n^2\ge\left(n+1\right)^{n-1}cho\left(n\ge1\right)\)chứng minh rằng
\(1< \frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+...+\frac{1}{3n+1}< 2\)
\(\frac{3}{5}< \frac{1}{2004}+\frac{2}{2005}+\frac{2}{2006}+...+\frac{1}{4006}< \frac{3}{4}\)
Tìm n là số N* biết
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+....._{ }+\sqrt{1+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}}=2001\frac{2001}{4006}\)