NH

tính

\(\int\frac{dx}{\sqrt{x^2+1}+\sqrt{2-x^2}}\)

NT
14 tháng 10 2015 lúc 13:03

ta có

\(\int\frac{dx}{\sqrt{x^2+1}+\sqrt{2-x^2}}=\int\frac{\sqrt{x^2+1}+\sqrt{2-x^2}}{\left(\sqrt{x^2+1}+\sqrt{1-x^2}\right)\left(\sqrt{x^2+1}-\sqrt{2-x^2}\right)}dx=\int\frac{\sqrt{x^2+1}+\sqrt{2-x^2}}{3x^2}dx=\int\frac{\sqrt{x^2+1}}{3x^2}+\int\frac{\sqrt{2-x^2}dx}{3x^2}\)=\(\frac{1}{3}\left(I_1+I_2\right)\)

Tính \(I_1=\int\frac{\sqrt{1+x^2}}{x^2}dx\)

\(tant=x\Rightarrow dx=\frac{1}{cos^2x}dx\)

ta có

\(\int\frac{\sqrt{1+tan^2t}}{cos^2t.tan^2t}dt=\int\frac{\frac{1}{cosx}}{sin^2t}dx=\int\frac{d\left(sint\right)}{sin^2t\left(1-sin^2t\right)}=\int\frac{dy}{y^2\left(1-y^2\right)}\)

làm tương tự câu trên ta tính đc \(I_1,I_2\) TA TÍNH ĐC I

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
TH
Xem chi tiết
HL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
MT
Xem chi tiết