BB

Tính:

\(\dfrac{\sqrt[4]{7\sqrt[3]{54}+15\sqrt[3]{128}}}{\sqrt[3]{\sqrt[4]{32}}+\sqrt[3]{9\sqrt[4]{162}}}\)

NT
16 tháng 9 2023 lúc 13:33

\(A=\dfrac{\sqrt[4]{7\sqrt[3]{54}+15\sqrt[3]{128}}}{\sqrt[3]{\sqrt[4]{32}}+\sqrt[3]{9\sqrt[4]{162}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{7\sqrt[3]{3^3.2}+15\sqrt[3]{4^3.2}}}{\sqrt[3]{\sqrt[4]{2^4.2}}+\sqrt[3]{9\sqrt[4]{3^4.2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{7.3\sqrt[3]{2}+15.4\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{9.3\sqrt[4]{2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{21\sqrt[3]{2}+60\sqrt[3]{2}}}{\sqrt[3]{2\sqrt[4]{2}}+\sqrt[3]{3^3\sqrt[4]{2}}}\)

\(\Leftrightarrow A=\dfrac{\sqrt[4]{81\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}=\dfrac{3\sqrt[4]{\sqrt[3]{2}}}{\sqrt[3]{\sqrt[4]{2}}\left(\sqrt[3]{2}+3\right)}\)

\(\Leftrightarrow A=\dfrac{3}{\sqrt[3]{2}+3}\)

Bình luận (0)

Các câu hỏi tương tự
DM
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
AT
Xem chi tiết
HM
Xem chi tiết
AK
Xem chi tiết
KN
Xem chi tiết
FJ
Xem chi tiết
H24
Xem chi tiết