\(B=\frac{\frac{\left(101+1\right).101}{2}}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}=\frac{101.51}{1+1+..+1+1}\) (dưới mẫu có 50 cặp => có 51 số 1)
\(B=\frac{101.51}{51}=101\)
\(B=\frac{\frac{\left(101+1\right).101}{2}}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}=\frac{101.51}{1+1+..+1+1}\) (dưới mẫu có 50 cặp => có 51 số 1)
\(B=\frac{101.51}{51}=101\)
rút gọn :\(\frac{101+100+99+98+.,.+3+2+1}{101-100+99-98+...+3-2+1}\)
B=(101+100+99+98+.....+3+2+1) / (101-100+99-98+.......+3-2+1)
B=(101+100+99+98+.....+3+2+1) / (101-100+99-98+.......+3-2+1)
\(Tính:\frac{101+101+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+....+3-2+1}\)=?
Tính bằng cách hợp lý
A. (7575x76-75x7676):(1+3+5+…+99)
A=101+100+99+98+…+3+2+1
101-100+99-98+….+3- 2+1
Tính A =\(\frac{101+100+99+98+......+3+2+1}{101-100+99-98+......+3-2+1}\)
A = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...3-2+1}\) = ?