B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110
B = 1/2 x 3 + 1/3 x 4 + 1/4 x 5 + 1/5 x 6 + 1/6 x 7 + ... + 1/19 x 10 + 1/10 x 11
B = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/19 - 1/10 + 1/10 - 1/11
B = 1/2 - 1/11
B = 9/22
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Vậy B=9/22
\(\text{Ta có : }\) \(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(B=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
\(B=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/ 42 + .....+1/90 + 1/110
\(=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{2}-\frac{1}{11}\)
\(=\frac{9}{22}\)