\(A=\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{91.94}\)
\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)
\(\Leftrightarrow A=1-\frac{1}{94}=\frac{93}{94}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{97.99}\)
\(\Leftrightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{3}{97.99}\)
\(\Leftrightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{97}-\frac{1}{99}\)
\(\Leftrightarrow2B=1-\frac{1}{99}=\frac{98}{99}\)
\(\Leftrightarrow B=\frac{98}{99}:2=\frac{49}{99}\)
Ta có : \(A=\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{91.94}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)
\(=1-\frac{1}{94}\)
\(=\frac{93}{94}\)