6 : 2(1 + 2)
= 6 : 2 . 3
= 3 . 3
= 9
đúng ko
6 : 2 ( 1 + 2)
= 6: 2 x 3
= 3 x 3
= 9
6:2(2+1)
=6:(2(2+1))
=6(:2 x 3)
=6:6
=1
Đây là cách duy nhất để làm bài này, nhiều bạn lấy 6:2 trước ròi mới tính trong ngoặc, SAI!!!! Phải làm như thế này!!!!!
6 : 2(1 + 2)
= 6 : 2 . 3
= 3 . 3
= 9
đúng ko
6 : 2 ( 1 + 2)
= 6: 2 x 3
= 3 x 3
= 9
6:2(2+1)
=6:(2(2+1))
=6(:2 x 3)
=6:6
=1
Đây là cách duy nhất để làm bài này, nhiều bạn lấy 6:2 trước ròi mới tính trong ngoặc, SAI!!!! Phải làm như thế này!!!!!
Hãy nêu ra những điểm khác và giống nhau của 2 đẳng thức :
\(6\div2\left(1+2\right)\)và\(6\div\left(1+2\right)\times2\)
AI K MK MK K LẠI CHO
e,\(A=\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)\)
\(\Rightarrow A=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}=4-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=4-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{1}-\frac{1}{7}\right)=4-\frac{6}{7}=3\frac{1}{7}\)
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(
Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)
Cần chứng minh
\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)
\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)
Tính
\(6\div\left(1+2\right)\times2\)
BẰNG 1 ; 4 HAY 9
Ai nhanh mk K
1) Tính:
a) \(\frac{3}{5}+\left(-\frac{1}{4}\right)\)
b) \(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)
c) \(4\frac{3}{5}:\frac{2}{5}\)
2) Tìm x:
a)\(\frac{12}{x}=\frac{3}{4}\)
b) \(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)
c) \(\frac{-11}{12}.x+0,25=\frac{5}{6}\)
d) \(\left(x-1\right)^5=-32\)
3) Cho |m| = -3, tìm m:
4) Các cạnh của một tam giác có số đo tỉ lệ với các số 3; 4; 5. Tính cạnh của tam giác biết chu vi của nó là 13,2 cm
Cho a,b,c>0; a+b+c=3/4. Tìm min
\(M=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(\left(1-\dfrac{1}{3}\right)x\left(1-\dfrac{1}{6}\right)x\left(1-\dfrac{1}{15}\right)x.....x\left(1-\dfrac{1}{1225}\right)xa=1\\\)
tìm a ghi chú(\(x\)) = nhân
\(B=\frac{x^2+x+1}{x^2+2x+1}\)
\(x^2+x+1=bx^2+2xb+b\)
\(x^2\left(1-b\right)+x\left(1-2b\right)+\left(1-b\right)\)
chọn b để pt lớn hơn hoặc = 0 " tức denta =0
\(\Delta=\left(1-2b\right)^2-4\left(1-b\right)^2=0\)
giải nhanh b=3/4 , thay b=3/4 vòa
\(x^2\left(1-\frac{3}{4}\right)+x\left(1-\frac{6}{4}\right)+\left(1-\frac{3}{4}\right)\ge0\)" vì denta=0"
dấu = xảy ra khi x= +- căn 3 " tự giải pt " chúa chỉ làm thế