2/2005+1+2^2/2005^2+1+2^3/2005^3+1+....+2^n/2005^n+1....+2^2006/2005^2^2005+1
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
c = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005 , d = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004 tính c-d
1)A=2005^2005+1 trên 2005^2006+1 và B=2005^2004+1 trên 2005^2005 2)A=2006^2006+1 trên2007^2007+1 vàB=2006^2005+1 trên 2006^2006+1
Tìm C, D
C = 2005/2 + 2005/3+ 2005/4+....+ 2005/2005
D = 2006 / 1 + 2006 / 2 + 2006 / 3 +....+ 4009 / 2004
Cho S= \(\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+........+\frac{2^{n+1}}{2005^{2^n}+1}+.......+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
Cho \(S=\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}+1}+...+\frac{2^{n+1}}{2005^{2^{n+1}}+1}+...+\frac{2^{2006}}{2005^{2^{2006}}+1}\)
So sánh S với \(\frac{1}{1002}\)
Cho S=\(\frac{2}{2005+1}+\frac{2^2}{2005^2+1}+\frac{2^3}{2005^{2^2}}+...\)\(..+\frac{2^{n+1}}{2005^{2^n}}+...+\frac{2^{2006}}{2005^{2^{2005}}+1}\)
So sánh S với \(\frac{1}{1002}\)