KL

tính:2/1x2+2/2x3+2/3x4+2/4x5+...+2/99x100

BH
11 tháng 3 2017 lúc 10:59

A=2(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\))=2(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))

=> A=2(\(\frac{1}{1}-\frac{1}{100}\))=2.\(\frac{99}{100}=\frac{99}{50}\)

ĐS: A=99/50

Bình luận (0)
SK
11 tháng 3 2017 lúc 10:54

\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{99\times100}\)

\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{99\times100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
DP
11 tháng 3 2017 lúc 10:57

\(2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\times\left(1-\frac{1}{100}\right)\)

\(=2\times\frac{99}{100}\)

\(=\frac{99}{50}\)

Bình luận (0)
ND
11 tháng 3 2017 lúc 10:58

tổng các số trên sẽ là:

2/1x2+2/3+4=33/11

đáp số:33/11

Bình luận (0)
PL
11 tháng 3 2017 lúc 11:14

99/50 do nha ban

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
GH
Xem chi tiết
ZZ
Xem chi tiết
NK
Xem chi tiết
PP
Xem chi tiết
N2
Xem chi tiết
KL
Xem chi tiết