\(\frac{1}{1.2.3}+\frac{1}{1.2.3}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10100}\right)=\frac{5049}{20200}\)