\(\frac{4}{3}+\frac{9}{8}+...+\frac{9801}{9800}\)
\(=1+\frac{1}{2^2-1}+1+\frac{1}{3^2-1}+...+1+\frac{1}{99^2-1}\)
\(=98+\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{97.99}+\frac{1}{98.100}\)
\(=98+\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{2.4}+\frac{2}{3.5}+\frac{2}{4.6}+...+\frac{2}{97.99}+\frac{2}{98.100}\right)\)
\(=98+\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{4-2}{2.4}+\frac{5-3}{3.5}+\frac{6-4}{4.6}+...+\frac{99-97}{97.99}+\frac{100-98}{98.100}\right)\)
\(=98+\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{98}-\frac{1}{100}\right)\)
\(=98+\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{99}-\frac{1}{100}\right)\)
\(=98+\frac{14651}{19800}\)