\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2018}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{2019}}\)
Ta có: \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
\(\Rightarrow\frac{1}{2}S=S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\Rightarrow S=1-\frac{1}{2^{2019}}.\)
\(\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
\(S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\)
\(\Rightarrow S=\frac{1}{4}-\frac{1}{2^{2021}}\)
#)Giải :
\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\Rightarrow2S=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(\Rightarrow2S=2+\frac{2}{2}+\frac{2}{2^2}+...+\frac{2}{2^{2019}}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\)
\(\Rightarrow2S-S=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2018}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2019}}\)
\(S=2-\frac{1}{2^{2019}}=\frac{2^{2019}-1}{2^{2018}}\)
Vậy : \(S=\frac{2^{2019}-1}{2^{2018}}\)
#~Will~be~Pens~#