\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(S=1-\frac{1}{2012}\)
\(S=\frac{2011}{2012}\)
Chúc bạn học tốt nha !!!
=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012
= 1-1/2012
= 2011/2012
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow S=1-\frac{1}{2012}=\frac{2011}{2012}\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012
=1-1/2012
=2011/2012
S=1/1.2+1/2.3+...+1/2011.2012
S=1-1/2+1/2-1/3+1/3-1/4+....+1/2011-1/2012
S=1-1/2012
S=2011/2012
Vậy S=2011/2012