Sao Cũng Được
Trả lời
13
Đánh dấu
13/06/2015 lúc 12:46
Cho : S = 30 + 32 + 34 + 36 + ... + 32002
a) Tính S
b) Chứng minh S chia hết cho 7
Được cập nhật 09/10/2017 lúc 18:34
Toán lớp 6
thien ty tfboys 13/06/2015 lúc 13:06
Báo cáo sai phạm
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Đúng 23 Sai 0
bui duc anh 04/04/2016 lúc 21:44
Báo cáo sai phạm
S= 3^0 +3^2 +3^4 +....+ 3^2002
9S= 3^4 +3^6+.......+3^2004
9S-S=3^2004-1
8S=3^2004-1
S=3^2004-1/8
Đúng 8 Sai 0
thien ty tfboys 13/06/2015 lúc 13:05
Báo cáo sai phạm
S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
Đúng 6 Sai 0
oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
Báo cáo sai phạm
a)
30+32+....+32002
=(30+32+34)+.....+(3199832000+32002)
=3×(1+3+32)+.......+31998×(1+3+32)
=3×91+....+31998×91
=91×(3+...+31998)
Vì 91 chia hết cho 7
=>91×(3+...+31998) chia hết cho 7
Vậy S chia hết cho 7