G6

Tính tổng

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)

KT
19 tháng 8 2018 lúc 19:01

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}.\frac{209}{420}\)

\(=\frac{209}{840}\)

Bình luận (0)
H24
19 tháng 8 2018 lúc 19:04

\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)

\(=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot21}\right)\)

bn tự lm tp

Bình luận (0)
DH
19 tháng 8 2018 lúc 19:25

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\)

\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{19.20.21}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{19.20}-\frac{1}{20.21}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{20.21}\right)=\frac{1}{2}.\frac{209}{420}=\frac{209}{840}\)

Bình luận (0)

Các câu hỏi tương tự
G6
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
G6
Xem chi tiết
HA
Xem chi tiết
NQ
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết