NH

Tính tổng

\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\)

\(\dfrac{51}{53}+\dfrac{55}{57}+\dfrac{61}{63}+\dfrac{69}{71}+\dfrac{79}{81}+\dfrac{91}{93}\) 

\(=\left(\dfrac{52}{53}-\dfrac{1}{53}\right)+\left(\dfrac{56}{57}-\dfrac{1}{57}\right)+\left(\dfrac{62}{63}-\dfrac{1}{63}\right)+\left(\dfrac{70}{71}-\dfrac{1}{71}\right)+\left(\dfrac{80}{81}-\dfrac{1}{81}\right)+\left(\dfrac{92}{93}-\dfrac{1}{93}\right)\)

\(=\left(1-\dfrac{1}{53}-\dfrac{1}{53}\right)+\left(1-\dfrac{1}{57}-\dfrac{1}{57}\right)+\left(1-\dfrac{1}{63}-\dfrac{1}{63}\right)+\left(1-\dfrac{1}{71}-\dfrac{1}{71}\right)+\left(1-\dfrac{1}{81}-\dfrac{1}{81}\right)+\left(1-\dfrac{1}{93}-\dfrac{1}{93}\right)\)

\(=\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)+\left(1-0\right)\) 

\(=1+1+1+1+1+1\) 

\(=6\)

Bình luận (1)

Các câu hỏi tương tự
DA
Xem chi tiết
DA
Xem chi tiết
NN
Xem chi tiết
QP
Xem chi tiết
AN
Xem chi tiết
AN
Xem chi tiết
3A
Xem chi tiết
MN
Xem chi tiết
KM
Xem chi tiết