B = 1 + 4 + 42 +...+ 4200 + 4201
=> 4B = 4 + 42 +43 +...+ 4201 + 4202
=> 4B-B = 4202 - 1
3B = 4202 -1
\(\Rightarrow B=\frac{4^{202}-1}{3}\)
4B = 4 + 4^2 + 4^3 + ... + 4^202
4B - B = ( 4 + 4^2 + 4^3 + ... + 4^202 ) - ( 1 + 4 + 4^2 + ... + 4^201 )
3B = 4^202 - 1
B = \(\frac{4^{202}-1}{3}\)
\(B=1+4+4^2+...+4^{201}\)
\(\Rightarrow4B=4+4^2+4^3+...+4^{202}\)
\(\Rightarrow4B-B=\left(4+4^2+4^3+...+2^{202}\right)-\left(1+4+4^2+...+4^{201}\right)\)
\(\Rightarrow3B=4^{202}-1\)
\(\Rightarrow B=\frac{4^{202}-1}{3}\)
Vậy \(B=\frac{4^{202}-1}{3}\)
_Chúc bạn học tốt_
Ta có:
B = 1 + 4 + 42 + ... + 4200 + 4201
=> 4B = 4(1 + 4 + 42 + ... + 4200 + 4201)
=> 4B = 4 + 42 + 43 + ... + 4201 + 4202
=> 4B - B = (4 + 42 + 43 + ... + 4201 + 4202) - (1 + 4 + 42 + ... + 4200 + 4201)
=> 3B = 4202 - 1
=> B = (4202 - 1) : 3
=> B = \(\frac{4^{202}-1}{3}\)
Vậy B = \(\frac{4^{202}-1}{3}\)