NT

tính tổng :

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{45.46}\)

KV
4 tháng 10 2019 lúc 17:44

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{45.46}\)

\(\Rightarrow S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{45.46}\)

\(\Rightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{46}\)

\(\Rightarrow S=1-\frac{1}{46}\)

\(\Rightarrow S=\frac{45}{46}\)

Bình luận (0)

Bài làm

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{45.46}\)

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{45.46}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{46}\)

\(S=\frac{1}{1}-\frac{1}{46}\)

\(S=\frac{46}{46}-\frac{1}{46}\)

\(S=\frac{45}{46}\)

Vậy \(S=\frac{45}{46}\)

# Học tốt #

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NQ
Xem chi tiết
MN
Xem chi tiết
MA
Xem chi tiết
PH
Xem chi tiết
BD
Xem chi tiết
PQ
Xem chi tiết
GC
Xem chi tiết
KS
Xem chi tiết