\(A=\frac{1+2+3+...+2015}{2016}\)
\(A=\frac{\left(2015+1\right)\times2015:2}{2016}\)
\(A=\frac{\text{2031120}}{2016}\)
\(A=\text{1007,5}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(A=\frac{1+2+3+...+2015}{2016}\)
\(A=\frac{\left(2015+1\right)\times2015:2}{2016}\)
\(A=\frac{\text{2031120}}{2016}\)
\(A=\text{1007,5}\)
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
So sánh 2 biểu thức sau:
A= \(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)
Cho \(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\) .Hãy so sánh A với 3
SO SÁNH
A = \(\frac{2015}{2016}\)+ \(\frac{2016}{2017}\)
B = \(\frac{2015+2016}{2016+2017}\)
Tính M , biết :
\(M=1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)+\frac{1}{4}\times\left(1+2+3+4\right)+...+\frac{1}{2016}\times\left(1+2+3+4+...+2015+2016\right).\)
A =\(\frac{2015+\frac{2014}{2}+\frac{2013}{3}+\frac{2012}{4}+\frac{2011}{5}+.....+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2016}}=\)
tìm A
A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\)
So sánh A và B
\(A=\frac{2015+1}{2016+1}\) \(B=\frac{2016+1}{2015+1}\)
\(A=\frac{15}{14}+\frac{16}{15}+\frac{17}{16}+\frac{18}{17}\) SO SÁNH A VỚI 4
\(B=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2018}{2019}\)SO SÁNH B VỚI 3