Violympic toán 9

NN

Tính tổng sau:

S=\(\frac{1}{2\sqrt[]{1}+1\sqrt[]{2}}+\frac{1}{3\sqrt[]{2}+2\sqrt[]{3}}+.........+\frac{1}{100\sqrt[]{99}+99\sqrt[]{100}}\)

NL
28 tháng 10 2019 lúc 20:19

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)

\(\Rightarrow S=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{99}}{99}-\frac{\sqrt{100}}{100}\)

\(=\frac{\sqrt{1}}{1}-\frac{\sqrt{100}}{100}=1-\frac{1}{10}=\frac{9}{10}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
29 tháng 10 2019 lúc 9:21

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng: \(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AG
Xem chi tiết
HB
Xem chi tiết
HB
Xem chi tiết
AM
Xem chi tiết
MM
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết