Ta có :
\(S=2^{2015}-2^{2014}-...-2-1\)
\(S=2^{2015}-\left(2^{2014}+...+2+1\right)\)
Đặt \(A=2^{2014}+...+2+1\) ta có :
\(2A=2^{2015}+...+2^2+2\)
\(2A-A=\left(2^{2015}+...+2^2+2\right)-\left(2^{2014}+...+2+1\right)\)
\(A=2^{2015}-1\)
\(\Rightarrow\)\(S=2^{2015}-A=2^{2015}-\left(2^{2015}-1\right)=2^{2015}-2^{2015}+1=1\)
Vậy \(S=1\)
Chúc bạn học tốt ~