TT

Tính tổng S=1+2+5+14+....+3^x-1+1/2( n thuộc Z)

DH
25 tháng 3 2017 lúc 20:00

\(S=1+2+5+14+....+\frac{3^{x-1}+1}{2}\)

\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+.....+\frac{3^{x-1}+1}{2}\)

\(=\frac{\left(3^0+1\right)+\left(3^1+1\right)+\left(3^2+1\right)+.....+\left(3^{x-1}+1\right)}{2}\)

\(=\frac{\left(1+3+3^2+.....+3^{x-1}\right)+x}{2}\)

Đặt \(A=1+3+3^2+....+3^{x-1}\)

\(3A-A=\left(3+3^2+....+3^x\right)-\left(1+3+....+3^{x-1}\right)\)

\(2A=3^x-1\Rightarrow A=\frac{3^x-1}{2}\)

\(\Rightarrow S=\frac{\frac{3^x-1}{2}+x}{2}\)

Bình luận (0)

Các câu hỏi tương tự
VA
Xem chi tiết
VA
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
BD
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết