NK

Tính tổng S=1.2.3+2.3.5+...+n(n+1)(2n+1)

NM
20 tháng 6 2023 lúc 11:06

 

S=1.2.3+2.3.(4+1)+3.4.(5+2)+...+n(n+1)[(n+2).(n-1)=

=1.2.3+1.2.3+2.3.4+2.3.4+3.4.5+...+(n-1)n(n+1)+n(n+1)(n+2)=

=2[1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)]+n(n+1)(n+2)

Đặt 

A=1.2.3+2.3.4+3.4.5+...+(n-1)n(n+1)

4A=1.2.3.4+2.3.4.4+3.4.5.4+...+(n-1)n(n+1).4=

=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+(n – 1).n.(n + 1).[(n + 2) – (n – 2)]

=1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)=

= (n – 1).n(n + 1).(n + 2)

2A=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{2}\)

S=2A+n(n+1)(n+2)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
LL
Xem chi tiết
NL
Xem chi tiết
OO
Xem chi tiết
TL
Xem chi tiết
MK
Xem chi tiết