Đặt \(A=\frac{1}{2.6}+\frac{1}{6.10}+...+\frac{1}{194.198}\)
\(A=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{194}-\frac{1}{198}\right)\)
\(A=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{198}\right)\)
\(A=\frac{1}{4}.\frac{49}{99}\)
\(A=\frac{49}{396}\)
Đặt \(B=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(B=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(B=\frac{1}{2}.\frac{98}{303}\)
\(B=\frac{49}{303}\)
Vậy P = A + B = \(\frac{49}{396}+\frac{49}{303}\) Bạn tự tính luôn nha máy tính mình hết pin rồi
\(P=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)
\(P=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(4P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(4P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(4P=1-\frac{1}{101}\)
\(4P=\frac{100}{101}\)
\(P=\frac{100}{101}:4\)
\(P=\frac{25}{101}\)