\(M=1-2+3-4+5-6+......+99-100+101\)
\(=\left(1+3+5+.......+99+101\right)-\left(2+4+6+.......+100\right)\)
\(=\left(1+2+3+4+........+100+101\right)-2.\left(2+4+6+......+100\right)\)
\(=\left(1+2+3+4+.......+100+101\right)-\left(1+2+3+.......+50\right)\)
\(=51+52+53+.......+101=\frac{\left(101+51\right).51}{2}=\frac{152.51}{2}=3876\)
m = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + 9 - 10 + ... + 99 - 100 + 101 (có 101 số hạng)
m = (1 - 2) + (3 - 4) + (5 - 6) + ... + (99 - 100) + 101
m= - 1 + (-1) + (-1) + (-1) + ... + (-1) + 101 (có 100 : 2 = 50 số - 1 và 101)
m = - 50 + 101 = (101 - 50)
m
= 51
Ta có M=1-2+3-4+5-6+...+99-100+101
=) M=(1-2)+(3-4)+(5-6)+...+(99-100)+101
=) M=(-1)+(-1)+(-1)+...+(-1)+101
=) M=(-1).50+101 [50 số (-1)]
=) M= -50+101
=) M=51