NC

Tính tổng của 8 số dạng đầu (n ≥ 4, n là số tự nhiên)

với số dạng tổng quát : \(C_n^4\)

Lười viết đề nên viết thế này :((

AH
20 tháng 10 2021 lúc 22:41

Lời giải:

Áp dụng đẳng thức quen thuộc \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\) ta được:

\(\sum \limits_{n=4}^{11}C^4_n=C^4_4+\sum \limits_{n=5}^{11}C^4_n=1+\sum \limits_{n=5}^{11}(C^5_{n+1}-C^5_n)\)

\(=1+(C^5_6+C^5_7+..+C^5_{12})-(C^5_5+C^5_6+...+C^5_{11})\)

\(=1+C^5_{12}-C^5_5=C^5_{12}=792\)

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NP
Xem chi tiết