\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2008.2011}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2008}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}\)
\(=\frac{2011}{2011}-\frac{1}{2011}\)
\(=\frac{2010}{2011}\)
Chúc bạn học tốt !!!!
Đặt: A= \(\frac{3}{1\times4}\)+ \(\frac{3}{4\times7}\)+ \(\frac{3}{7\times10}\)+...+ \(\frac{3}{2005\times2008}\)+ \(\frac{3}{2008\times2011}\).
A= \(\frac{3}{1}\)- \(\frac{3}{4}\)+ \(\frac{3}{4}\)- \(\frac{3}{7}\)+ \(\frac{3}{7}\)- \(\frac{3}{10}\)+...+ \(\frac{3}{2005}\)- \(\frac{3}{2008}\)+ \(\frac{3}{2008}\)- \(\frac{3}{2011}\).
A= 3- \(\frac{3}{2011}\).
A= \(\frac{6033}{2011}\)- \(\frac{3}{2011}\).
A= \(\frac{6030}{2011}\).
Vậy A= \(\frac{6030}{2011}\).
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{2008\cdot2011}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{2008}-\frac{1}{2011}\)
\(=1-\frac{1}{2011}\)
\(=\frac{2010}{2011}\)