`Answer:`
\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}
`Answer:`
Mình gửi lại bài nhé. Mong lần này không bị lỗi như lần trước.
\(\dfrac15+\dfrac1{5+10}+\dfrac1{5+10+15}\ +\,.\!.\!.+\ \dfrac1{5+10+15\ +\,.\!.\!.+\ 100}\\=\dfrac15+\dfrac1{5.(1+2)}+\dfrac1{5.(1+2+3)}\ +\,.\!.\!.+\ \dfrac1{5.(1+2+3\ +\,.\!.\!.+\ 20)}\\=\dfrac15\left(1+\dfrac1{1+2}+\dfrac1{1+2+3}\ +\,.\!.\!.+\ \dfrac1{1+2+3\ +\,.\!.\!.+\ 20}\right)\\=\dfrac15\bigg(\dfrac22+\dfrac26+\dfrac2{12}\ +\,.\!.\!.+\ \dfrac2{20.21}\bigg)\\=\dfrac25\left(\dfrac1{1.2}+\dfrac1{2.3}+\dfrac1{3.4}\ +\,.\!.\!.+\ \dfrac1{20.21}\right)\\=\dfrac25\left(1-\dfrac12+\dfrac12-\dfrac13+\dfrac13-\dfrac14\ +\,.\!.\!.+\ \dfrac1{20}-\dfrac1{21}\right)\\=\dfrac25\left(1-\dfrac1{21}\right)\\=\dfrac25\!\cdot\!\dfrac{20}{21}\\=\dfrac8{21}\)