NT

TÍNH TỔNG : 1/1 : 2 + 1/2 : 3 + 1/3 : 4 + .........+ 1/2009:2010 + 1/2010 : 2011

DL
7 tháng 6 2019 lúc 11:27

Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.

Bình luận (0)
XO
7 tháng 6 2019 lúc 11:30

Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)

\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(1-\frac{1}{2011}\)

\(\frac{2010}{2011}\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
NH
Xem chi tiết
AD
Xem chi tiết
LQ
Xem chi tiết
LA
Xem chi tiết
DC
Xem chi tiết
VV
Xem chi tiết
PN
Xem chi tiết
NH
Xem chi tiết