A) Số hạng thứ 100 số hạng của dãy là: \(\frac{1}{100.101}\)
Tổng 100 số hạng đầu tiên của dãy:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)
B) Ta có: \(\frac{1}{6}=\frac{1}{1.6};\frac{1}{66}=\frac{1}{6.11};\frac{1}{176}=\frac{1}{11.16}...\)
\(\Rightarrow\) Số hạng thứ 100 của dãy là: \(\frac{1}{496.501}\)
Tổng 100 số hạng đầu tiên của dãy là:
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{501}{501}-\frac{1}{501}=\frac{500}{501}\)