Cho hàm số y = x 3 − 3 x 2 + 1 . Tịnh tiến đồ thị hàm số lên trên 3 đơn vị rồi qua phải 2 đơn vị ta được đồ thị hàm số không đi qua điểm nào dưới đây?
A. (4;0)
B. (0;4)
C. (2;4)
D. (3;2)
Cho hàm số y = m x 2 − 2(m − 1)x + 1 (m ≠ 0) có đồ thị (Cm). Tịnh tiến ( C m ) qua trái 1 đơn vị ta được đồ thị hàm số ( C m ' ). Giá trị của m để giao điểm của ( C m ) và ( C m ' ) có hoành độ x = 14 thỏa mãn điều kiện nào dưới đây?
A. 1 < m < 5
B. m > 4
C. 0 < m < 2
D. −2 < m < 0
Khi tịnh tiến parabol y = 2 x 2 sang trái 3 đơn vị, ta được đồ thị của hàm số:
A. y = 2 ( x + 3 ) 2
B. y = 2 x 2 + 3
C. y = 2 ( x - 3 ) 2
D. 2 x 2 - 3
Điểm nào sau đây thuộc đồ thị của hàm số y = | x + 2 | + | 3 x - 1 | + | - x + 4 | ?
A. M(0; 7) B. N(0; 5)
C. P(-2; -1) D. Q(-2; 1)
Cho hàm số y = 3|x − 2| − |2x − 6| có đồ thị (C). Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên với x ∈ [−3; 4]
A. max − 3 ; 4 y = 4
B. min y = − 2 − 3 ; 4
C. Cả A, B đều đúng
D. Cả A, B đều sai
C/m: Đồ thị của hàm số y = x - 2 và đồ thị của hàm số y = 2 - x là 2 đường thẳng đối xứng với nhau qua trục hoành
a. Xét dấu của biểu thức f(x) = 2x(x+2)-(x+2)(x+1)
b. Lập bảng biến thiên và vẽ trong cùng một hệ tọa độ vuông góc đồ thị của các hàm số : y = 2x(x+2) ( C1 ) và y = (x+2)(x+1)(C2)
Tính tọa độ giao điểm A và B của (C1) và (C2).
c. Tính các hệ số a, b, c để hàm số y = ax2 + bx + c có giá trị lớn nhất bằng 8 và độ thị của nó đi qua A và B.
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
Vẽ đồ thị các hàm số sau đây a) y = x ^ 2 - 3x + 4 b) y = - x ^ 2 + 2x + 3 Giúp mk vs