H24

Tính thể tích khối tứ diện đều S.ABC có cạnh bằng a

AH
30 tháng 3 2024 lúc 22:33

Lời giải:

Kẻ $SH\perp $(ABC)$ thì $H$ là tâm tam giác đều $ABC$

Có:

$AH=\frac{2}{3}d(A,BC)=\frac{2}{3}\sqrt{a^2-(\frac{a}{2})^2}=\frac{2}{3}.\frac{\sqrt{3}a}{2}=\frac{\sqrt{3}a}{3}$

$SH=\sqrt{SA^2-AH^2}=\sqrt{a^2-(\frac{\sqrt{3}a}{3})^2}=\frac{\sqrt{6}a}{3}$

$S_{ABC}=BC.d(A,BC):2=a.\sqrt{a^2-(\frac{a}{2})^2}:2=\frac{\sqrt{3}}{4}a^2$
Thể tích $S.ABC$ là:

$V=\frac{1}{3}SH.S_{ABC}=\frac{1}{3}.\frac{\sqrt{6}}{3}a.\frac{\sqrt{3}}{4}a^2$
$=\frac{\sqrt{2}a^3}{12}$

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết