\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)chứng minh
Tính B=\(\left(\sqrt{10}-\sqrt{2}\right)\cdot\sqrt{3+\sqrt{6}}\)
1,826-y/\(1,826-\frac{y^2}{\sqrt{12,04}}:\sqrt{18}\cdot\left(\sqrt{15}-\frac{2,3+\frac{5}{3\sqrt{5}}\cdot7}{0,0598\sqrt{15}+\sqrt[3]{6}}\right)=\frac{7}{4}\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
phân tích đa thức thành nhân tử
\(x\cdot\sqrt{x}-3x+4\cdot\sqrt{x}-2\) với \(x>0\)
tinh gia tri bieu thuc
\(C=\sqrt{\left(1-\sqrt{2007}\right)^2}\cdot\sqrt{2008+2\sqrt{2007}}\)
Rút gọn:
\(A=1-\left[\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}+\dfrac{2x-1+\sqrt{x}}{1-x}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
\(B=\left[1:\frac{2x-1}{x-x^2}\right]\cdot\left[\frac{2x^3+x^2-x}{x^3-1}-2-\frac{1}{x-1}\right]\)
Rút gọn:
\(A=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
Rút gọn:
\(A=\left[1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)\right]\cdot\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}-a+\sqrt{a}-1}\right]\)