Tính giá trị biêu thức :
\(\sin x\cdot\cos x+\frac{\sin^2x}{1+\cot x}+\frac{\cos^2x}{1+\tan x}\)
với 0 độ < x< 90 độ
Chứng minh các đẳng thức sau với mọi góc nhọn x, y:
a/ cos4x - sin4x = cos2x - sin2x
b/ \(\frac{1}{1+\tan x}+\frac{1}{1+\cot x}=1\)1
c/ cos2x - cos2y = sin2y - sin2x = \(\frac{1}{1+\tan^2x^2}-\frac{1}{1+\tan^2y}\)
d/ \(\frac{1+sin^2x}{1-sin^2x}=1+2tan^2x\)
rút gọn biểu thức sau:
B=\(\dfrac{1-4\sin^2x.\cos^2x}{\left(\sin x+\cos x\right)^2}+2\sin x.\cos x\) , với 0 độ<x<90 độ
Chứng minh đẳng thức:
\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}=\sin x+\cos x\)
CMR : Giá trị của bt ko phụ thuộc vào biến x :\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos x+\sin x}{\tan^2x-1}-\sin x.\cos x\)
BÀI 1 :cho tam giác ABC vuông tại A có AB=4cm BC=6cm. tính tỉ số lượng giác của các góc B và C
BÀI 2 :đơn giản các biểu thức
a)\(A=\cos^2x+\cos^2x.\cot g^2x\)
b)\(sin^2x+\sin^2x.\tan^2x\)
c)\(\dfrac{2cos^2x-1}{\sin x+\cos x}\)
d)\(\dfrac{\cos x}{1+\sin x}+\tan x\)
giải pt
a) \(\sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right).tan^2x-cos^2\frac{x}{2}=0\)
b) \(3tan^3x-tanx+\frac{3\left(1+sinx\right)}{cos^2x}-8cos^2\left(\frac{\pi}{4}-\frac{x}{2}\right)=0\)
a) Cho sin x = \(\frac{\sqrt{3}}{2}\). Tính cos x, tan x, cot x.
b) Cho cos x = \(\frac{4}{5}\).Tính sin x, tan x, cot x
a) nếu sin x = 3.cos x Tính sin x. cos x = .....?
b) cho sin x\(=\frac{2}{3}\). tính \(5cos^2x+2sin^2x=...?\)
c) sin x + cos x = \(\frac{5}{7}\). tính tan x = ...?
d) tan x = \(\frac{1}{2}\) tính \(\frac{sinx+cosx}{cosx-sinx}=...?\)
m.n giúp mk nha, ai nhanh mk tick cho nha