\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{19}}\)
=> \(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
=> \(S=1-\frac{1}{2^{20}}\)