H24

Tính     S = \(\frac{1}{2.4}\)+\(\frac{1}{4.6}\)+\(\frac{1}{6.8}\)+.....+\(\frac{1}{98.100}\)

 

DT
25 tháng 6 2015 lúc 19:17

S = 1/2 . ( 1/2 -1/2 + 1/6 -1/2 + ...+ 1/99 - 1/100)

S= 1/2 . (1-2 - 1/100)

S=1/2 . 49/100

S= 49/200

 

Bình luận (0)
MT
25 tháng 6 2015 lúc 19:20

\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

=>2S=\(2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

=\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\)

=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

=\(\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)

=>S=\(\frac{49}{100}:2=\frac{49}{100}.\frac{1}{2}=\frac{49}{200}\)

Bình luận (0)
TT
25 tháng 6 2015 lúc 19:17

Ta co :

\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Vay:\(S=\frac{49}{100}\)

Bình luận (0)
TP
13 tháng 8 2017 lúc 16:46

Ta có:

\(S=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow S=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)\)

\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow S=\frac{1}{2}.\frac{49}{50}=\frac{49}{100}\)

Bình luận (0)

Các câu hỏi tương tự
IM
Xem chi tiết
LN
Xem chi tiết
QB
Xem chi tiết
G6
Xem chi tiết
BN
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết