Ta có công thức :
\(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
Áp dụng vào bài toán ta được :
\(S=2^3+3^3+4^3+...+20^3=\left(\frac{20\left(20+1\right)}{2}\right)^2-1^3=44099\)
Đúng 0
Bình luận (0)