NH

Tính nhanh:

\(\frac{4}{2.4}\)+\(\frac{4}{4.6}+\frac{4}{6.8}+....+\frac{4}{2008.2010}\)

TM
10 tháng 7 2016 lúc 20:49

\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2.\frac{502}{1005}\)

\(=\frac{1004}{1005}\)

Có gì ko hiểu thì cứ hỏi mình nha :)

Bình luận (0)
NS
10 tháng 7 2016 lúc 20:52

Ta có: \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(=2.2\frac{2}{4}+2.2\frac{2}{4.6}+2.2\frac{2}{6.8}+...+2.2\frac{2}{2008.2010}\)

\(=2.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2008.2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)

\(=2.\left(\frac{1}{2}-\frac{1}{2010}\right)\)

\(=2.\frac{1}{2}-2.\frac{1}{2010}\)

\(=1-\frac{1}{1005}\)

\(=\frac{1004}{1005}\)

Bình luận (0)
NH
10 tháng 7 2016 lúc 21:02

\(\text{Ta có:}\) \(A=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)

\(\Rightarrow\frac{1}{2}A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+....+\frac{2}{2008.2010}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2008}-\frac{1}{2010}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{2010}\)

\(\Rightarrow\frac{1}{2}A=\frac{502}{1005}\)

\(\Rightarrow A=\frac{502}{1005}:\frac{1}{2}=\frac{1004}{1005}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
G6
Xem chi tiết
IM
Xem chi tiết
BN
Xem chi tiết
MT
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết