\(B=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
=> \(B=\frac{1}{5}.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+...+\frac{5}{496.501}\right)\)
=> \(B=\frac{1}{5}.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\right)\)
=> \(B=\frac{1}{5}.\left(1-\frac{1}{501}\right)=\frac{1}{5}.\frac{500}{501}=\frac{100}{501}\)