KX

Tính nhanh

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

LH
21 tháng 5 2015 lúc 12:40

Ta có:

\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)

\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)

\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)

\(=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)

\(=2.\left(\frac{4}{16}-\frac{1}{16}\right)\)

\(=2.\frac{3}{16}=\frac{3}{8}\)

 

 

Bình luận (0)
TM
18 tháng 3 2017 lúc 20:26

= 3/8 nhe

Bình luận (0)
VA
5 tháng 4 2018 lúc 21:19

3/8 nhé

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CL
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết
VN
Xem chi tiết
LT
Xem chi tiết
FY
Xem chi tiết
PL
Xem chi tiết