Ta có:
\(A=\frac{4x+x+1}{x-1}=\frac{5x+1}{x-1}=\frac{\left(x-1\right)5+6}{x-1}=5+\frac{6}{x-1}\)
Vì 5 là một số nguyên nên để A là số nguyên thì \(\frac{6}{x-1}\)phải là một số nguyên
Hay \(\left(x-1\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau:
x-1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 2 | 0 | 3 | -1 | 4 | -2 | 7 | -5 |
Vậy \(x\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)thì A là một số nguyên.
\(A=\frac{x.4+x+1}{x-1}\)
\(\Rightarrow A=\frac{x.4+x+1}{x-1}=2+\frac{1}{x-4}\)
\(\Rightarrow A\in Z\Rightarrow\frac{1}{x-4}\in Z\)
P/s: Tôi ko chắc đâu