( 1/100-1/2) : 1/6 + 1=-97/50
(1/100+1/2)*97/50:2=-51/388
( 1/100-1/2) : 1/6 + 1=-97/50
(1/100+1/2)*97/50:2=-51/388
Tính nhanh :
\(S=\frac{1}{100}-\frac{2}{100}+\frac{3}{100}-\frac{4}{100}+\frac{5}{100}-....-\frac{98}{100}+\frac{99}{100}-\frac{100}{100}\)
Tính nhanh \(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+....+\frac{1}{98}+\frac{1}{99}}\)
tính nhanh: \(\frac{100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
Tính nhanh :
A = \(\left(\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}\right)\cdot\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{98}{99}\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\cdot\left(\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}\right)\)
Tính nhanh:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+100}\)
CMR:
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..+\frac{99}{100}\)
b, \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Giải nhanh giùm mình nhé!!!!!!!!!!!!!!
Bài 1: Tính nhanh
a) \(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{19.21}\)
b) \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)
c) \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
Bài 2. Tìm x, biết:
a) \(\frac{x-2}{20}=\frac{5}{2-x}\)
b) \(\left(\frac{x}{3}+\frac{1}{2}\right)\left(75\%-1\frac{1}{2}x\right)=0\)
Mk cảm ơn nhé. Các bn làm đc câu nào thì làm (nhất là b2)
Tính dãy số sau :
\(D=\frac{100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{98}{99}+\frac{99}{100}}\)
Tính nhanh
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)