H24

Tính nhanh \(A=\frac{10^2}{1.6}+\frac{10^2}{6.11}+...+\frac{10^2}{61.66}\)

DL
22 tháng 6 2015 lúc 20:11

\(A=\frac{10^2}{1\cdot6}+\frac{10^2}{6\cdot11}+...+\frac{10^2}{61\cdot66}=\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{61\cdot66}\right)\cdot20\)

\(=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\cdot20\)

\(=\left[\left(1-\frac{1}{66}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+...+\left(\frac{1}{61}-\frac{1}{61}\right)\right]\cdot20\)

\(=\left[\left(\frac{66}{66}-\frac{1}{66}\right)+0+...+0\right]\cdot20=\frac{65}{66}\cdot20=\frac{65\cdot20}{66}=\frac{65\cdot10}{33}=\frac{650}{33}\)

Bình luận (0)
NT
22 tháng 6 2015 lúc 20:13

\(A=\frac{10^2}{1.6}+\frac{10^2}{6.11}+...+\frac{10^2}{61.66}\)

\(=10^2.\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{61.66}\right)\)

\(=10^2.5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{61}-\frac{1}{66}\right)\)

\(=500.\left(1-\frac{1}{66}\right)\)

\(=500.\frac{65}{66}\)

\(=\frac{16250}{33}\)

Bình luận (0)

Các câu hỏi tương tự
IB
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
VP
Xem chi tiết
NC
Xem chi tiết
CT
Xem chi tiết
TP
Xem chi tiết
TL
Xem chi tiết
LN
Xem chi tiết