\(A=\frac{5}{3\cdot7}+\frac{5}{7\cdot11}+\frac{5}{11\cdot15}+...+\frac{5}{35\cdot39}\)
\(=\frac{5}{4}\cdot\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{35\cdot39}\right)\)
\(=\frac{5}{4}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...-\frac{1}{35}+\frac{1}{35}-\frac{1}{39}\right)\)
\(=\frac{5}{4}\cdot\left(1-\frac{1}{39}\right)=\frac{5}{4}\cdot\frac{38}{39}=\frac{95}{78}\)